English version

1. Solve the equation

$$3^x - 5^y = z^2$$

in positive integers.

2. Let MN be a line parallel to the side BC of triangle ABC, with M on the side AB and N on the side AC. The lines BN and CM meet at point P. The circumcircles of triangles BMP and CNP meet at two distinct points P and Q. Prove that $\angle BAQ = \angle CAP$.

3. A 9×12 rectangle is partitioned into unit squares. The centres of all the unit squares, except for the four corner squares and the eight squares sharing a common side with one of them, are coloured red. Is it possible to label these red centres C_1, C_2, \ldots, C_{96} in such a way that the following two conditions are both fulfilled

- (i) the distances C_1C_2 , C_2C_3 , ..., $C_{95}C_{96}$, $C_{96}C_1$ are all equal to $\sqrt{13}$,
- (ii) the closed broken line $C_1 C_2 \dots C_{96} C_1$ has a centre of symmetry?

4. Denote by S the set of all positive integers. Find all functions $f: S \to S$ such that

$$f(f(m)^2 + 2f(n)^2) = m^2 + 2n^2$$
, for all $m, n \in S$.

Time allowed: 4 hours and 30 minutes. Each problem is worth 10 points.