1. Solve the equation

$$
3^{x}-5^{y}=z^{2}
$$

in positive integers.
2. Let $M N$ be a line parallel to the side $B C$ of triangle $A B C$, with M on the side $A B$ and N on the side $A C$. The lines $B N$ and $C M$ meet at point P. The circumcircles of triangles $B M P$ and $C N P$ meet at two distinct points P and Q. Prove that $\angle B A Q=\angle C A P$.
3. A 9×12 rectangle is partitioned into unit squares. The centres of all the unit squares, except for the four corner squares and the eight squares sharing a common side with one of them, are coloured red. Is it possible to label these red centres $C_{1}, C_{2}, \ldots, C_{96}$ in such a way that the following two conditions are both fulfilled
(i) the distances $C_{1} C_{2}, C_{2} C_{3}, \ldots, C_{95} C_{96}, C_{96} C_{1}$ are all equal to $\sqrt{13}$,
(ii) the closed broken line $C_{1} C_{2} \ldots C_{96} C_{1}$ has a centre of symmetry?
4. Denote by S the set of all positive integers. Find all functions $f: S \rightarrow S$ such that

$$
f\left(f(m)^{2}+2 f(n)^{2}\right)=m^{2}+2 n^{2}, \quad \text { for all } m, n \in S
$$

Time allowed: 4 hours and 30 minutes.
Each problem is worth 10 points.

