SEEMOUS 2015 Contest Problems and Solutions

Problem 1. Prove that for every x € (0,1) the following inequality holds:

}\/1+ (cos y)2dy > \/x2 +(sin x)2
0

Solution 1. Clearly

1 X
[y/1+ (cos y)2dy > [ 1+ (cos y)2dy .
0 0

Define a function F :[0,1] —>[] by setting:

X
F(x) = [y1+ (cos y)2dy — X2 + (sinx)2 .
0
Since F(0) =0, it suffices to prove F'(x) > 0. By the fundamental theorem of Calculus, we have

= (X) '1+(COSX x+sm XCOSX .

\/x +(sin x)
Thus, it is enough to prove that
(1+(cos x)2)(x2 +(sin x)2) > (X +sin xcosx)z.

But this is a straightforward application of the Cauchy-Schwarz inequality.

Solution 2. Clearly I1/1+ Cosy J.J cosy dy for each fixed XE(O 1) Observe that
0

X

_[1/1+(COS y)zdy is the arc length of the function f (y) =siny on the interval [O, X] which is clearly

0

strictly greater than the length of the straight line between the points (0,0) and (X,Sin X) which in turn
is equal to /X” +(sin X)2 .

Problem 2. For any positive integer N, let the functions f, :[] —[] be defined by fj,,1(X)= f(f, (X)),

where fj(x) =3x —4x3. Solve the equation fh(x)=0.

Solution. First, we prove that |X| >1:>|fn (X)| >1 holds for every positive integer n. It suffices to
demonstrate the validity of this implication for n = 1. But, by assuming |X| >1, it readily follows that

|fl(X)|:|XH3—4X2‘2‘3—4X2‘>1, which completes the demonstration. We conclude that every



solution of the equation f,(X)=0 lies in the closed interval [-1,1]. For an arbitrary such X, set
X =sint where t =arcsin x € [—E,E] . We clearly have fi(sint) =sin3t, which gives

f,(x) =sin3"t =sin(3" arcsin x).
Thus, f,(x)=0 if and only if sin(3"arcsinx) =0, i.e. only when 3" arcsinx =kz for some ke Z.

Therefore, the solutions of the equation f,(x) =0 are given by

X =sinkz
Sn

) ) 1-3" 3"-1
where Kk acquires every integer value from up to

2 2




Problem 3. For anintegern>2, let AB,C,D e M, () be matrices satisfying:
AC-BD=1,,
AD+BC =0,
where | is the identity matrix and O, is the zero matrix in M, (U).
Prove that:
a) CA-DB=1,, and DA+CB=0,,
b) det(AC)=>0and (-1)"det(BD)>0.
Solution. a) We have
AC-BD+i(AD+BC)=1, < (A+iB)(C+iD)=1,,
which implies that the matrices A+iB and C +iD are inverses to one another. Thus,
(C+iD)(A+iB)=1, < CA-DB+i(DA+CB) =1,
< CA-DB=1,, DA+CB=0,.
b) We have
det((A+iB)C) =det(AC +iBC)

AD+BC=0,
= det(AC —iAD)

=det(A(C —iD).
On the other hand,

(C+iD)(A+iB)=1,,
detC . det((C +iD)(A+iB)C) = det((C +iD)A(C —iD))

= det(A) |det(C +iD) [* .
Thus,
det(AC) = (detA)?|det(C +iD) |*>0.
Similarly
det((A+iB)D) = det(AD +iBD)

AD+BC=0,
—  det(—BC +iBD)

= (-1)"det(B(C - iD)).
This implies that

(C+iD)(A+iB)=I,
detD = det((C +iD)(A+iB)D) = (~I)"det((C +iD)B(C - iD))

= (~1)"det(B) | det(C +iD) |* .
Thus, (~1)"det(BD) = (detB)? |det(C +iD) [?=0.



Problem 4. Let | c[J be an open interval which contains 0, and f : | - be a function of class

Cc2916(1) such that f(0)=0, f'(0) =1, f"(0) = f"(0) =...= f ?¥19)(0) =0, f (2016)(0) <.
i) Prove that thereis J >0 such that
0< f(x)<x, ¥xe(0,0). (1.1)

i) With & determined asin i), define the sequence (a,) by
alzgv an;1 = f(ap), vn=1. (1.2)
o0
Study the convergence of the series Y aj,, for rell .
n=1
Solution. i) We claim that there exists @ >0 such that f(x)>0 for any xe(0,«). For this, observe

that, since f is of class C! and f'(0)=1>0, there exists a >0 such that f'(x)>0 on (0,a). Since
f(0)=0 and f is strictly increasing on (0, ), the claim follows.

Next, we prove that there exists >0 such that f(x)<x for any xe(0,5). Since
£ (2016) (0)<0 and f is of class C20%8 there is S >0 such that f (2016) (t) <0, for any te(0,p). By
the Taylor's formula, for any x € (0, 8), there is 8 €[0,1] such that

_ f'(0) 2015 0) 2015 . %) (9x) 2016
FO) = 1(0) + =3 X+ ..+ —575) 2016! ’ (1.3)
hence
£(2016)
9(x) = T k2016 <0, yx (0, A).

Taking 6 =min{a, 8} >0, the item i) is completely proven.
if) We will prove first that the sequence (@) given by (1.2) converges to 0. Indeed, by relation (1.1)
it follows that
O<apg<ay, Vn2x1l,
hence the sequence (@) is strictly decreasing and lower bounded by 0. It follows that (a,) converges

to some (e [O,é) . Passing to the limit in (1.2) , one gets ¢ = f (¢). Taking into account (1.1), we deduce

that ¢ =0.

In what follows, we calculate
lim naﬁms.
N—o0

From ay 10, using the Stolz-Cesaro Theorem, we conclude that

. . . n+l)—n .
lim na2’®® = fim —0— = lim —{MD i L
n—oo n—oo N—o0 - N—o0 -
ar%015 ar219-%5 ar%015 f(an)2015 a§015
2015
. . xf (x
= lim ——1——=Iim Ut ()

2015 2015 *
x—0 f(X)ZOlS_XZOIS x—0 X ~f (X)



2 f (2019 (%) _ 2017 o
2015 X4+ —72X
Observe that, by (1.3) (Xf (X)) — 2016!

’ X2015 _ f (X)2015 _%Xzow(xzom
2016!

Since f isof class C29%8, lim f(2916) (gx) = § (2916) (0) and
x—0

+ X (X) +...+ T (X))

lim —CFOD™Y 2061
X—0 X20157 f (X)2015 2015 f (2016) (0)
0 0
It means, by the comparison criterion, that the series za,ﬁ and Y L
n=1 n=1n2015

converge and/or diverge

o0
simultaneously, hence the series Zarﬁ converges for r > 2015, and diverges for r < 2015.
n=1



