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Problem 1. Let a, b and c be positive real numbers. Prove that

a3b6 + b3c6 + c3a6 + 3a3b3c3 ≥ abc(a3b3 + b3c3 + c3a3) + a2b2c2(a3 + b3 + c3).

Solution. After dividing both sides of the given inequality by a3b3c3 it becomesÅ
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Then we have that xyz = 1 and by substituting (2) into (1), we find that
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Multiplying the inequality (3) by xyz, and using the fact that xyz = 1, the inequality is equivalent to

x3 + y3 + z3 + 3xyz − xy2 − yz2 − zx2 − yx2 − zy2 − xz2 ≥ 0. (4)

Finally, notice that by the special case of Schur’s inequality

xr(x− y)(x− z) + yr(y − x)(y − z) + zr(z − y)(z − x) ≥ 0, x, y, z ≥ 0, r > 0,

with r = 1 there holds

x(x− y)(x− z) + y(y − x)(y − z) + z(z − y)(z − x) ≥ 0 (5)

which after expansion actually coincides with the congruence (4).

Remark 1. The inequality (5) immediately follows by supposing (without loss of generality) that
x ≥ y ≥ z, and then writing the left hand side of the inequality (5) in the form

(x− y)(x(x− z)− y(y − z)) + z(y − z)(x− z),

which is obviously ≥ 0.
Remark 2. One can obtain the relation (4) using also the substitution x = ab2, y = bc2 and z = ca2.
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Problem 2. Let ABC be a scalene triangle with incentre I and circumcircle (ω). The lines AI,BI,CI
intersect (ω) for the second time at the points D,E, F , respectively. The lines through I parallel to
the sides BC,AC,AB intersect the lines EF,DF,DE at the points K,L,M , respectively. Prove that
the points K,L,M are collinear.

Solution. First we will prove that KA is tangent to (ω).
Indeed, it is a well-known fact that FA = FB = FI and EA = EC = EI, so FE is the perpendicular
bisector of AI. It follows that KA = KI and

∠KAF = ∠KIF = ∠FCB = ∠FEB = ∠FEA,

so KA is tangent to (ω). Similarly we can prove that LB,MC are tangent to (ω) as well.
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Let A′, B′, C ′ the intersections of AI,BI,CI with BC,CA,AB respectively. From Pascal’s The-
orem on the cyclic hexagon AACDEB we get K,C ′, B′ collinear. Similarly L,C ′, A′ collinear and
M,B′, A′ collinear.

Then from Desargues’ Theorem for 4DEF,4A′B′C ′ which are perspective from the point I, we
get that points K,L,M of the intersection of their corresponding sides are collinear as wanted.

Remark (P.S.C.). After proving that KA,LB,MC are tangent to (ω), we can argue as follows:

It readily follows that 4KAF ∼ 4KAE and so
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way we can find that
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. Multiplying we obtain
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= 1,

so by the converse of Menelaus theorem applied in the triangle DEF we get that the points K,L,M
are collinear.
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Problem 3. A jury of 3366 film critics are judging the Oscars. Each critic makes a single vote for
his favourite actor, and a single vote for his favourite actress. It turns out that for every integer
n ∈ {1, 2, . . . , 100} there is an actor or actress who has been voted for exactly n times. Show that
there are two critics who voted for the same actor and for the same actress.

Solution. Let us assume that every critic votes for a different pair of actor and actress. We’ll arrive
at a contradiction proving the required result. Indeed:

Call the vote of each critic, i.e his choice for the pair of an actor and an actress, as a double-vote,
and call as a single-vote each one of the two choices he makes, i.e. the one for an actor and the other
one for an actress. In this terminology, a double-vote corresponds to two single-votes.

For each n = 34, 35, . . . , 100 let us pick out one actor or one actress who has been voted by exactly
n critics (i.e. appears in exactly n single-votes) and call S the set of these movie stars. Calling a, b
the number of men and women in S, we have a+ b = 67.

Now let S1 be the set of double-votes, each having exactly one of its two corresponding single-
votes in S, and let S2 be the set of double-votes with both its single-votes in S. If s1, s2 are the
number of elements in S1, S2 respectively, we have that the number of all double-votes with at least
one single-vote in S is s1 + s2, whereas the number of all double-votes with both single-votes in S is
s2 ≤ ab.

Since all double-votes are distinct, there must exist at least s1 + s2 critics. But the number of all
single-votes in S is s1+2s2 = 34+35+ · · ·+100 = 4489, and moreover s ≤ ab. So there exist at least
s1 + s2 = s1 + 2s2 − s2 ≥ 4489− ab critics.

Now notice that as a+ b = 67, the maximum value of ab with a, b integers is obtained for {a, b} =

{33, 34}, so ab ≤ 33 · 34 = 1122. A quick proof of this is the following: ab =
(a+ b)2 − (a− b)2

4
=

672 − (a− b)2

4
which is maximized (for not equal integers a, b as a + b = 67) whenever |a − b| = 1,

thus for {a, b} = {33, 34}.
Thus there exist at least 4489− 1122 = 3367 critics which is a contradiction and we are done.

Remark. We are going here to give some motivation about the choice of number 34, used in the
above solution.
Let us assume that every critic votes for a different pair of actor and actress. One can again start by
picking out one actor or one actress who has been voted by exactly n critics for n = k, k+ 1, . . . , 100.
Then a+b = 100−k+1 = 101−k and the number of all single-votes is s1+2s2 = k+k+1+· · ·+100 =

5050− k(k − 1)

2
, so there exist at least s1 + s2 = s1 + 2s2 − s2 ≥ 5050− k(k − 1)

2
− ab and

ab =
(a+ b)2 − (a− b)2

4
=

(101− k)2 − (a− b)2

4
≤ (101− k)2 − 1

4
.

After all, the number of critics is at least

5050− k(k − 1)

2
− (101− k)2 − 1

4
.

In order to arrive at a contradiction we have to choose k such that

5050− k(k − 1)

2
− (101− k)2 − 1

4
≥ 3367

and solving the inequality with respect to k, the only value that makes the last one true is k = 34.



Problem 4. Prove that among any 20 consecutive positive integers there exists an integer d such
that for each positive integer n we have the inequality

n
√
d {n
√
d} > 5

2

where {x} denotes the fractional part of the real number x. The fractional part of a real number x is
x minus the greatest integer less than or equal to x.

Solution. Among the given numbers there is a number of the form 20k + 15 = 5(4k + 3). We shall
prove that d = 5(4k + 3) satisfies the statement’s condition. Since d ≡ −1(mod 4), it follows that d is
not a perfect square, and thus for any n ∈ N there exists a ∈ N such that a + 1 > n

√
d > a, that is,

(a + 1)2 > n2d > a2. Actually, we are going to prove that n2d ≥ a2 + 5. Indeed:
It is known that each positive integer of the form 4s+ 3 has a prime divisor of the same form. Let

p | 4k + 3 and p ≡ −1(mod 4). Because of the form of p, the numbers a2 + 12 and a2 + 22 are not
divisible by p, and since p | n2d, it follows that n2d 6= a2 + 1, a2 + 4. On the other hand, 5 | n2d, and
since 5 - a2 + 2, a2 + 3, we conclude n2d 6= a2 + 2, a2 + 3. Since n2d > a2 we must have n2d ≥ a2 + 5
as claimed. Therefore,
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,

which was to be proved.
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